Расчет тепловых нагрузок на отопление, методика и формула расчета

Зависит он от материала, из которого они изготовлены. Чаще всего сегодня используются биметаллические, алюминиевые, стальные, значительно реже чугунные радиаторы. Каждый из них имеет свой показатель теплоотдачи (тепловой мощности). Биметаллические радиаторы при расстоянии между осями в 500 мм, в среднем имеют 180 — 190 Вт. Радиаторы из алюминия имеют практически такие же показатели.

Теплоотдача описанных радиаторов рассчитывается на одну секцию. Радиаторы стальные пластинчатые являются неразборными. Поэтому их теплоотдача определяется исходя из размера всего устройства. Например, тепловая мощность двухрядного радиатора шириной 1 100 мм и высотой 200 мм будет 1 010 Вт, а панельного радиатора из стали шириной 500 мм, а высотой 220 мм составит 1 644 Вт.

В расчет радиатора отопления по площади входят следующие базовые параметры:

— высота потолков (стандартная – 2,7 м),

— тепловая мощность (на кв. м – 100 Вт),

— одна внешняя стена.

Эти расчеты показывают, что на каждые 10 кв. м необходимо 1 000 Вт тепловой мощности. Этот результат делится на тепловую отдачу одной секции. Ответом является необходимое количество секций радиатора.

Для южных районов нашей страны, так же как и для северных, разработаны понижающие и повышающие коэффициенты.

Характеристики объекта для расчета тепловых нагрузок

  • назначение и тип объекта недвижимости. Для расчета важно знать, какое здание будет обогреваться — жилой или нежилой дом, квартира (прочитайте также: «Квартирный прибор учета тепловой энергии»). От типа постройки зависит норма нагрузки, определяемая компаниями, поставляющими тепло, а, соответственно, расходы на теплоснабжение;
  • архитектурные особенности. Во внимание принимаются габариты таких наружных ограждений, как стены, кровля, напольное покрытие и размеры оконных, дверных и балконных проемов. Немаловажными считаются этажность здания, а также наличие подвалов, чердаков и присущие им характеристики;
  • норма температурного режима для каждого помещения в доме. Подразумевается температура для комфортного пребывания людей в жилой комнате или зоне административной постройки (прочитайте: «Тепловой расчет помещения и здания целиком, формула тепловых потерь»);
  • особенности конструкции наружных ограждений, включая толщину и тип стройматериалов, наличие теплоизоляционного слоя и используемая для этого продукция;
  • назначение помещений. Эта характеристика особо важна для производственных зданий, в которых для каждого цеха или участка необходимо создать определенные условия относительно обеспечения температурного режима;
  • наличие специальных помещений и их особенности. Это касается, например, бассейнов, оранжерей, бань и т.д.;
  • степень техобслуживания. Наличие/отсутствие горячего водоснабжения, централизованного отопления, системы кондиционирования и прочего;
  • количество точек для забора подогретого теплоносителя. Чем их больше, тем значительнее тепловая нагрузка, оказываемая на всю отопительную конструкцию;
  • количество людей, находящихся в здании или проживающих в доме. От данного значения напрямую зависят влажность и температура, которые учитываются в формуле вычисления тепловой нагрузки;
  • прочие особенности объекта. Если это промышленное здание, то ими могут быть, количество рабочих дней на протяжении календарного года, число рабочих в смену. Для частного дома учитывают, сколько проживает в нем людей, какое количество комнат, санузлов и т.д.

Укрупненный расчет тепловой нагрузки

  • α – поправочный коэффициент, учитывающий климатические особенности конкретного региона, где строится здание (применяется в том случае, когда расчетная температура отличается от 30 градусов мороза);
  • q0 — удельная характеристика теплоснабжения, которую выбирают, исходя из температуры самой холодной недели на протяжении года (так называемой «пятидневки»). Читайте также: «Как рассчитывается удельная отопительная характеристика здания – теория и практика»;
  • V – наружный объем постройки.

Способы расчета тепловой нагрузки на отопление

При проектировании систем обогрева всех типов строений нужно провести правильные вычисления, а затем разработать грамотную схему отопительного контура. На этом этапе особое внимание следует уделить расчету тепловой нагрузки на отопление. Для решения поставленной задачи важно использовать комплексный подход и учесть все факторы, влияющие на работу системы.

С помощью показателя тепловой нагрузки можно узнать количество теплоэнергии, необходимой для обогрева конкретного помещения, а также здания в целом. Основной переменной здесь является мощность всего отопительного оборудования, которое планируется использовать в системе. Кроме этого, требуется учитывать потери тепла домом.

Идеальной представляется ситуация, в которой мощность отопительного контура позволяет не только устранить все потери теплоэнергии здания, но и обеспечить комфортные условия проживания. Чтобы правильно рассчитать удельную тепловую нагрузку, требуется учесть все факторы, оказывающие влияние на этот параметр:

  • Характеристики каждого элемента конструкции строения. Система вентиляции существенно влияет на потери теплоэнергии.
  • Размеры здания. Необходимо учитывать как объем всех помещений, так и площадь окон конструкций и наружных стен.
  • Климатическая зона. Показатель максимальной часовой нагрузки зависит от температурных колебаний окружающего воздуха.

Оптимальный режим работы системы обогрева может быть составлен только с учетом этих факторов. Единицей измерения показателя может быть Гкал/час или кВт/час.

Перед началом проведения расчета нагрузки на отопление по укрупненным показателям нужно определиться с рекомендуемыми температурными режимами для жилого строения. Для этого придется обратиться к нормам СанПиН 2.1.2.2645−10. Исходя из данных, указанных в этом нормативном документе, необходимо обеспечить оптимальные температурные режимы работы системы обогрева для каждого помещения.

Используемые сегодня способы выполнения расчетов часовой нагрузки на отопительную систему позволяют получать результаты различной степени точности. В некоторых ситуациях требуется провести сложные вычисления, чтобы минимизировать погрешность.

Если же при проектировании системы отопления оптимизация расходов на энергоноситель не является приоритетной задачей, допускается использование менее точных методик.

Любая методика расчета тепловой нагрузки позволяет подобрать оптимальные параметры системы обогрева. Также этот показатель помогает определиться с необходимостью проведения работ по улучшению теплоизоляции строения. Сегодня применяются две довольно простые методики расчета тепловой нагрузки.

Если в строении все помещения имеют стандартные размеры и обладают хорошей теплоизоляцией, можно воспользоваться методом расчета необходимой мощности отопительного оборудования в зависимости от площади. В этом случае на каждые 10 м 2 помещения должен производиться 1 кВт тепловой энергии. Затем полученный результат необходимо умножить на поправочный коэффициент климатической зоны.

Это самый простой способ расчета, но он имеет один серьезный недостаток — погрешность очень высока. Во время проведения вычислений учитывается лишь климатический регион. Однако на эффективность работы системы обогрева влияет много факторов. Таким образом, использовать эту методику на практике не рекомендуется.

Применяя методику расчета тепла по укрупненным показателям, погрешность вычислений окажется меньшей. Этот способ сначала часто применялся для определения теплонагрузки в ситуации, когда точные параметры строения были неизвестны. Для определения параметра применяется расчетная формула:

Qот = q0*a*Vн*(tвн — tнро),

где q0 — удельная тепловая характеристика строения;

a — поправочный коэффициент;

Vн — наружный объем строения;

tвн, tнро — значения температуры внутри дома и на улице.

В качестве примера расчета тепловых нагрузок по укрупненным показателям можно выполнить вычисления максимального показателя для отопительной системы здания по наружным стенам 490 м 2 . Строение двухэтажное с общей площадью в 170 м 2 расположено в Санкт-Петербурге.

Сначала необходимо с помощью нормативного документа установить все нужные для расчета вводные данные:

  • Тепловая характеристика здания — 0,49 Вт/м³*С.
  • Уточняющий коэффициент — 1.
  • Оптимальный температурный показатель внутри здания — 22 градуса.

Предположив, что минимальная температура в зимний период составит -15 градусов, можно все известные величины подставить в формулу — Q =0.49*1*490 (22+15)= 8,883 кВт. Используя самую простую методику расчета базового показателя тепловой нагрузки, результат оказался бы более высоким — Q =17*1=17 кВт/час. При этом укрупненный метод расчета показателя нагрузки учитывает значительно больше факторов:

  • Оптимальные температурные параметры в помещениях.
  • Общую площадь строения.
  • Температуру воздуха на улице.

Также эта методика позволяет с минимальной погрешностью рассчитать мощность каждого радиатора, установленного в отдельно взятом помещении. Единственным ее недостатком является отсутствие возможности рассчитать теплопотери здания.

Так как даже при укрупненном расчете погрешность оказывается довольно высокой, приходится использовать более сложный метод определения параметра нагрузки на отопительную систему. Чтобы результаты оказались максимально точными, необходимо учитывать характеристики дома. Среди них важнейшей является сопротивление теплопередачи ® материалов, использовавшихся для изготовления каждого элемента здания — пол, стены, а также потолок.

Эта величина находится в обратной зависимости с теплопроводностью (λ), показывающей способность материалов переносить теплоэнергию. Вполне очевидно, что чем выше теплопроводность, тем активнее дом будет терять теплоэнергию. Так как эта толщина материалов (d) в теплопроводности не учитывается, то предварительно нужно вычислить сопротивление теплопередачи, воспользовавшись простой формулой — R=d/λ.

Рассматриваемая методика состоит из двух этапов. Сначала рассчитываются теплопотери по оконным проемам и наружным стенам, а затем — по вентиляции. В качестве примера можно взять следующие характеристики строения:

  • Площадь и толщина стен — 290 м² и 0,4 м.
  • В строении находятся окна (двойной стеклопакет с аргоном) — 45 м² (R =0,76 м²*С/Вт).
  • Стены изготовлены из полнотелого кирпича — λ=0,56.
  • Здание было утеплено пенополистиролом — d =110 мм, λ=0,036.

Исходя из вводных данных, можно определить показатель сопротивления телепередачи стен — R=0.4/0.56= 0,71 м²*С/Вт. Затем определяется аналогичный показатель утеплителя — R=0,11/0,036= 3,05 м²*С/Вт. Эти данные позволяют определить следующий показатель — R общ =0,71+3,05= 3,76 м²*С/Вт.

Фактические теплопотери стен составят — (1/3,76)*245+(1/0.76)*45= 125,15 Вт. Параметры температур остались без изменений в сравнении с укрупненным расчетом. Очередные вычисления проводятся в соответствии с формулой — 125,15*(22+15)= 4,63 кВт/час.

На втором этапе рассчитываются теплопотери вентиляционной системы. Известно, что объем дома равен 490 м³, а плотность воздуха составляет 1,24 кг/м³. Это позволяет узнать его массу — 608 кг. На протяжении суток в помещении воздух обновляется в среднем 5 раз. После этого можно выполнить расчет теплопотерь вентиляционной системы — (490*45*5)/24= 4593 кДж, что соответствует 1,27 кВт/час. Остается определить общие тепловые потери строения, сложив имеющиеся результаты, — 4,63+1,27=5,9 кВт/час.

Результат будет максимально точным, если учитывать потери через пол и крышу. Сложные вычисления здесь проводить необязательно, допускается использование уточняющего коэффициента. Процесс расчетов теплонагрузки на систему обогрева отличается высокой сложностью. Однако его можно упростить с помощью программы VALTEC.

Один примерный

Есть и четвертый вариант. Он имеет достаточно большую погрешность, ибо показатели берутся очень усредненные, или их недостаточно. Вот эта формула — Qот = q0 * a * VH * (tЕН – tНРО), где:

  • q0 – удельная тепловая характеристика здания (чаще всего определяется по самому холодному периоду),
  • a – поправочный коэффициент (зависит от региона и берется из готовых таблиц),
  • VH – объем, рассчитанный по внешним плоскостям.

Заключение

Данный расчет нагрузок на отопление дома даст гораздо более точные результаты, нежели традиционный способ по площади, хотя потрудиться придется. Конечный результат нужно обязательно умножить на коэффициент запаса – 1.2, а то и 1.4 и по рассчитанному значению подбирать котельное оборудование. Еще один способ укрупненного расчета тепловых нагрузок по нормативам показан на видео:

Пример простого расчета

Для строения со стандартными параметрами (высотой потолков, размерами комнат и хорошими теплоизоляционными характеристиками) можно применить простое соотношение параметров с поправкой на коэффициент, зависящий от региона.

Предположим, что жилой дом находится в Архангельской области, а его площадь — 170 кв. м. Тепловая нагрузка будет равна 17 * 1,6 = 27,2 кВт/ч.

Подобное определение тепловых нагрузок не учитывает многих важных факторов. Например, конструктивных особенностей строения, температуры, число стен, соотношение площадей стен и оконных проёмов и пр. Поэтому подобные расчеты не подходят для серьёзных проектов системы отопления.

Особенности существующих методик

Параметры, включаемые в расчет тепловой нагрузки, находятся в СНиПах и ГОСТах. В них же есть специальные коэффициенты теплопередачи. Из паспортов оборудования, входящего в систему отопления, берутся цифровые характеристики, касаемые определенного радиатора отопления, котла и пр. А также традиционно:

— расход тепла, взятый по максимуму за один час работы системы отопления,

— максимальный поток тепла, исходящий от одного радиатора,

— общие затраты тепла в определенный период (чаще всего – сезон); если необходим почасовой расчет нагрузки на тепловую сеть, то расчет нужно вести с учетом перепада температур в течение суток.

Произведенные расчеты сопоставляют с площадью тепловой отдачи всей системы. Показатель получается достаточно точный. Некоторые отклонения случаются. Например, для промышленных строений нужно будет учитывать снижение потребления тепловой энергии в выходные дни и праздничные, а в жилых помещениях – в ночное время.

Методики для расчета систем отопления имеют несколько степеней точности. Для сведения погрешности к минимуму необходимо использовать довольно сложные вычисления. Менее точные схемы применяются если не стоит цель оптимизировать затраты на отопительную систему.

Три основных

  1. Для расчета берутся укрупненные показатели.
  2. За базу принимаются показатели конструктивных элементов здания. Здесь будет важен и расчет потерь тепла, идущего на прогрев внутреннего объема воздуха.
  3. Рассчитываются и суммируются все входящие в систему отопления объекты.

Если необходим расчет в гигакалориях

В случае отсутствия счетчика тепловой энергии на открытом отопительном контуре расчет тепловой нагрузки на отопление здания рассчитывают по формуле Q = V * (Т1 — Т2) / 1000, где:

  • V – количество воды, потребляемой системой отопления, исчисляется тоннами или м 3 ,
  • Т1 – число, показывающее температуру горячей воды, измеряется в о С и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название – энтальпия. Если практическим путем снять температурные показатели нет возможности, прибегают к усредненному показателю. Он находится в пределах 60-65 о С.
  • Т2 – температура холодной воды. Ее измерить в системе довольно трудно, поэтому разработаны постоянные показатели, зависящие от температурного режима на улице. К примеру, в одном из регионов, в холодное время года этот показатель принимается равным 5, летом – 15.
  • 1 000 – коэффициент для получения результата сразу в гигакалориях.

В случае закрытого контура тепловая нагрузка (гкал/час) рассчитывается иным образом:

  • α – коэффициент, призванный корректировать климатические условия. Берется в расчет, если уличная температура отличается от -30 о С;
  • V – объем строения по наружным замерам;
  • qо – удельный отопительный показатель строения при заданной tн.р = -30 о С, измеряется в ккал/м 3 *С;
  • tв – расчетная внутренняя температура в здании;
  • tн.р – расчетная уличная температура для составления проекта системы отопления;
  • Kн.р – коэффициент инфильтрации. Обусловлен соотношением тепловых потерь расчетного здания с инфильтрацией и теплопередачей через внешние конструктивные элементы при уличной температуре, которая задана в рамках составляемого проекта.

Расчет тепловой нагрузки получается несколько укрупненным, но именно эта формула дается в технической литературе.

Вычисление тепловой нагрузки по объему комнат

Когда расстояние между полами и потолком достигает 3 м и более, предыдущий вариант расчета использовать нельзя – результат выйдет некорректным. В подобных случаях отопительную нагрузку принято считать по удельным укрупненным показателям расхода теплоты на 1 м³ объема помещения.

Формула и алгоритм вычислений остаются прежними, только параметр площади S меняется на объем – V:

Соответственно, принимается другой показатель удельного расхода q, отнесенный к кубатуре каждого помещения:

  • комната внутри здания либо с одной внешней стеной и окном – 35 Вт/м³;
  • помещение угловое с одним окном – 40 Вт/м³;
  • то же, с двумя световыми проемами – 45 Вт/м³.

Примечание. Повышающие и понижающие региональные коэффициенты k применяются в формуле без изменений.

Теперь для примера определим нагрузку на отопление нашего коттеджа, взяв высоту потолков равной 3 м:

Q = (47.25 х 45 + 63 х 40 + 15 х 35 + 21 х 35 + 18 х 35 + 47.25 х 45 + 63 х 40) х 1 = 11182 Вт ≈ 11.2 кВт.

Заметно, что требуемая тепловая мощность системы отопления выросла на 200 Вт по сравнению с предыдущим расчетом. Если же принять высоту комнат 2.7—2.8 м и сосчитать затраты энергии через кубатуру, то цифры получатся примерно одинаковые. То есть, способ вполне применим для укрупненного подсчета теплопотерь в помещениях любой высоты.

Расчет тепловой нагрузки на отопление здания: формула, примеры

При проектировании системы отопления, будь то промышленное строение или жилое здание, нужно провести грамотные расчеты и составить схему контура отопительной системы. Особое внимание на этом этапе специалисты рекомендуют обращать на расчёт возможной тепловой нагрузки на отопительный контур, а также на объем потребляемого топлива и выделяемого тепла.

Как рассчитывается тепловая нагрузка на систему отопления здания

Предположим, вам захотелось самостоятельно подобрать котел, радиаторы и трубы отопительной системы частного дома. Задача №1 – сделать расчет тепловой нагрузки на отопление, проще говоря, определить общий расход теплоты, необходимой для прогрева здания до комфортной температуры внутри помещений. Предлагаем изучить 3 расчетных методики – разные по сложности и точности результатов.

Обследование тепловизором

Все чаще, чтобы повысить эффективность работы отопительной системы, прибегают к тепловизионным обследованиям строения.

Работы эти проводят в темное время суток. Для более точного результата нужно соблюдать разницу температур между помещением и улицей: она должна быть не менее в 15 о . Лампы дневного освещения и лампы накаливания выключаются. Желательно убрать ковры и мебель по максимуму, они сбивают прибор, давая некоторую погрешность.

Обследование проводится медленно, данные регистрируются тщательно. Схема проста.

Первый этап работ проходит внутри помещения. Прибор двигают постепенно от дверей к окнам, уделяя особое внимание углам и прочим стыкам.

Второй этап – обследование тепловизором внешних стен строения. Все так же тщательно исследуются стыки, особенно соединение с кровлей.

Третий этап – обработка данных. Сначала это делает прибор, затем показания переносятся в компьютер, где соответствующие программы заканчивают обработку и выдают результат.

Если обследование проводила лицензированная организация, то она по итогу работ выдаст отчет с обязательными рекомендациями. Если работы велись лично, то полагаться нужно на свои знания и, возможно, помощь интернета.

Усредненный расчет и точный

Учитывая описанные факторы, усредненный расчет проводится по следующей схеме. Если на 1 кв. м требуется 100 Вт теплового потока, то помещение в 20 кв. м должно получать 2 000 Вт. Радиатор (популярный биметаллический или алюминиевый) из восьми секций выделяет около 150 Вт. Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.

Точный выглядит немного устрашающе. На самом деле ничего сложного. Вот формула:

  • q1 – тип остекления (обычное =1.27, двойное = 1.0, тройное = 0.85);
  • q2 – стеновая изоляция (слабая, или отсутствующая = 1.27, стена выложенная в 2 кирпича = 1.0, современна, высокая = 0.85);
  • q3 – соотношение суммарной площади оконных проемов к площади пола (40% = 1.2, 30% = 1.1, 20% — 0.9, 10% = 0.8);
  • q4 – уличная температура (берется минимальное значение: -35 о С = 1.5, -25 о С = 1.3, -20 о С = 1.1, -15 о С = 0.9, -10 о С = 0.7);
  • q5 – число наружных стен в комнате (все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2);
  • q6 – тип расчетного помещения над расчетной комнатой (холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8);
  • q7 – высота потолков (4.5 м = 1.2, 4.0 м = 1.15, 3.5 м = 1.1, 3.0 м = 1.05, 2.5 м = 1.3).

По любому из описанных методов можно провести расчет тепловой нагрузки многоквартирного дома.

Примерный расчет

Условия таковы. Минимальная температура в холодное время года — -20 о С. Комната 25 кв. м с тройным стеклопакетом, двустворчатыми окнами, высотой потолков 3.0 м, стенами в два кирпича и неотапливаемым чердаком. Расчет будет следующий:

Q = 100 Вт/м 2 × 25 м 2 × 0,85 × 1 × 0,8(12%) × 1,1 × 1,2 × 1 × 1,05.

Результат, 2 356.20, делим на 150. В итоге получается, что в комнате с указанными параметрами нужно установить 16 секций.

Определение потерь тепла через наружные ограждения

Для начала представим формулу из СНиП, по которой производится расчет тепловой энергии, теряемой через строительные конструкции, отделяющие внутреннее пространство дома от улицы:

Q = 1/R х (tв – tн) х S, где:

  • Q – расход тепла, уходящего через конструкцию, Вт;
  • R – сопротивление передаче тепла сквозь материал ограждения, м2ºС / Вт;
  • S – площадь этой конструкции, м2;
  • tв – температура, которая должна быть внутри дома, ºС;
  • tн – средняя уличная температура за 5 самых холодных дней, ºС.

Для справки. Согласно методике расчет теплопотерь выполняется отдельно для каждого помещения. С целью упростить задачу предлагается взять здание в целом, приняв приемлемую среднюю температуру 20—21 ºС.

Площадь для каждого вида наружного ограждения вычисляется отдельно, для чего измеряются окна, двери, стены и полы с кровлей. Так делается, потому что они изготовлены из разных материалов различной толщины. Так что расчет придется делать отдельно для всех видов конструкций, а результаты потом просуммировать. Самую холодную уличную температуру в своем районе проживания вы наверняка знаете из практики. А вот параметр R придется рассчитать отдельно по формуле:

  • λ – коэффициент теплопроводности материала ограждения, Вт/(мºС);
  • δ – толщина материала в метрах.

Примечание. Значение λ – справочное, его нетрудно отыскать в любой справочной литературе, а для пластиковых окон этот коэффициент вам подскажут производители. Ниже приводится таблица с коэффициентами теплопроводности некоторых стройматериалов, причем для вычислений надо брать эксплуатационные значения λ.

В качестве примера подсчитаем, сколько тепла потеряет 10 м2 кирпичной стены толщиной 250 мм (2 кирпича) при разнице температур снаружи и в доме 45 ºС:

R = 0.25 м / 0.44 Вт/(м · ºС) = 0.57 м2 ºС / Вт.

Q = 1/0.57 м2 ºС / Вт х 45 ºС х 10 м2 = 789 Вт или 0.79 кВт.

Если стена состоит из разных материалов (конструкционный материал плюс утеплитель), то их тоже надо считать отдельно по приведенным выше формулам, а результаты суммировать. Таким же образом просчитываются окна и кровля, а вот с полами дело обстоит иначе. Первым делом необходимо нарисовать план здания и разбить его на зоны шириной 2 м, как это сделано на рисунке:

Теперь следует вычислить площадь каждой зоны и поочередно подставить в главную формулу. Вместо параметра R нужно взять нормативные значения для зоны I, II, III и IV, указанные ниже в таблице. По окончании расчетов результаты складываем и получаем общие потери тепла через полы.

Методы вычисления тепловых нагрузок

  • вычисление теплопотерь с использованием укрупненных показателей;
  • определение теплоотдачи установленного в здании отопительно-вентиляционного оборудования;
  • вычисление значений с учетом различных элементов ограждающих конструкций, а также добавочных потерь, связанных с нагревом воздуха.

Считаем расход теплоты по квадратуре

Для приблизительной прикидки отопительной нагрузки обычно используется простейший тепловой расчет: берется площадь здания по наружному обмеру и умножается на 100 Вт. Соответственно, потребление тепла дачным домиком 100 м² составит 10000 Вт или 10 кВт. Результат позволяет подобрать котел с коэффициентом запаса 1.2—1.3, в данном случае мощность агрегата принимается равной 12.5 кВт.

Мы предлагаем выполнить более точные вычисления, учитывающие расположение комнат, количество окон и регион застройки. Итак, при высоте потолков до 3 м рекомендуется использовать следующую формулу:

Расчет ведется для каждого помещения отдельно, затем результаты суммируются и умножаются на региональный коэффициент. Расшифровка обозначений формулы:

  • Q – искомая величина нагрузки, Вт;
  • Sпом – квадратура комнаты, м²;
  • q – показатель удельной тепловой характеристики, отнесенный к площади помещения, Вт/м²;
  • k – коэффициент, учитывающий климат в районе проживания.

Для справки. Если частный дом расположен в полосе умеренного климата, коэффициент k принимается равным единице. В южных регионах k = 0.7, в северных применяются значения 1.5—2.

В приближенном подсчете по общей квадратуре показатель q = 100 Вт/м². Подобный подход не учитывает расположение комнат и разное количество световых проемов. Коридор, находящийся внутри коттеджа, потеряет гораздо меньше тепла, чем угловая спальня с окнами той же площади. Мы предлагаем принимать величину удельной тепловой характеристики q следующим образом:

  • для помещений с одной наружной стеной и окном (или дверью) q = 100 Вт/м²;
  • угловые комнаты с одним световым проемом – 120 Вт/м²;
  • то же, с двумя окнами – 130 Вт/м².

Как правильно подбирать значение q, наглядно показано на плане здания. Для нашего примера расчет выглядит так:

Q = (15.75 х 130 + 21 х 120 + 5 х 100 + 7 х 100 + 6 х 100 + 15.75 х 130 + 21 х 120) х 1 = 10935 Вт ≈ 11 кВт.

Как видите, уточненные вычисления дали другой результат – по факту на отопление конкретного домика 100 м² израсходуется на 1 кВт тепловой энергии больше. Цифра учитывает расход теплоты на подогрев наружного воздуха, проникающего в жилище сквозь проемы и стены (инфильтрацию).

Способы определения нагрузки

Сначала поясним значение термина. Тепловая нагрузка – это общее количество теплоты, расходуемое системой отопления на обогрев помещений до нормативной температуры в наиболее холодный период. Величина исчисляется единицами энергии – киловаттами, килокалориями (реже – килоджоулями) и обозначается в формулах латинской буквой Q.

Зная нагрузку на отопление частного дома в целом и потребность каждого помещения в частности, нетрудно подобрать котел, обогреватели и батареи водяной системы по мощности. Как можно рассчитать данный параметр:

  1. Если высота потолков не достигает 3 м, производится укрупненный расчет по площади отапливаемых комнат.
  2. При высоте перекрытий 3 м и более расход тепла считается по объему помещений.
  3. Определение теплопотерь через внешние ограждения и затрат на подогрев вентиляционного воздуха согласно СНиП.

Примечание. В последние годы широкую популярность обрели онлайн-калькуляторы, размещаемые на страницах различных интернет-ресурсов. С их помощью определение количества тепловой энергии выполняется быстро и не требует дополнительных инструкций. Минус – достоверность результатов нужно проверять, ведь программы пишут люди, не являющиеся теплотехниками.

Две первые расчетные методики основаны на применении удельной тепловой характеристики по отношению к обогреваемой площади либо объему здания. Алгоритм простой, используется повсеместно, но дает весьма приближенные результаты и не учитывает степень утепления коттеджа.

Считать расход тепловой энергии по СНиП, как делают инженеры–проектировщики, гораздо сложнее. Придется собрать множество справочных данных и потрудиться над вычислениями, зато конечные цифры отразят реальную картину с точностью 95%. Мы постараемся упростить методику и сделать расчет нагрузки на отопление максимально доступным для понимания.

Тепловые нагрузки систем теплоснабжения

  • нагрузку на конструкцию теплоснабжения;
  • нагрузку на систему обогрева пола, если она планируется к установке в доме;
  • нагрузку на систему естественной и/или принудительной вентиляции;
  • нагрузку на систему горячего водоснабжения;
  • нагрузку, связанную с различными технологическими нуждами.

Как выполняется расчет тепловой нагрузки на отопление

Чтобы выяснить, какой мощностью должно располагать теплосиловое оборудование частного дома, нужно определить общую нагрузку на систему отопления, для чего и выполняется тепловой расчет. В данной статье мы не станем говорить об укрупненной методике подсчетов по площади или объему здания, а представим более точный способ, используемый проектировщиками, только в упрощенном виде для лучшего восприятия. Итак, на систему отопления дома ложится 3 вида нагрузок:

  • компенсация потерь тепловой энергии, уходящей сквозь строительные конструкции (стены, полы, кровлю);
  • нагрев воздуха, потребного для вентиляции помещений;
  • подогрев воды для нужд ГВС (когда в этом задействован котел, а не отдельный нагреватель).

Рассмотрим, как правильно рассчитать каждую из этих нагрузок по отдельности и определить общую мощность отопления здания.

Расчет нагрузок тепла

  • степень теплопотерь наружных ограждений;
  • мощность, необходимая для подогрева теплоносителя;
  • количество тепловой энергии, требуемое для нагрева воздуха для принудительной приточной вентиляции;
  • тепло, которое нужно для подогрева воды в бане или бассейне;
  • возможное дальнейшее расширение обогревательной системы. Это может быть создание отопления в мансарде, на чердаке, в подвале или в различных пристройках и строениях. Читайте также: «Как сделать отопление мансарды – популярные варианты обогрева».

Тепловая нагрузка от нагрева воды для ГВС

Для определения этой нагрузки можно воспользоваться той же простой формулой, только теперь надо посчитать тепловую энергию, расходуемую на подогрев воды. Ее теплоемкость известна и составляет 4.187 кДж/кг °С или 1.16 Вт/кг °С. Учитывая, что семье из 4 человек на все потребности достаточно 100 л воды на 1 сутки, нагретой до 55 °С, подставляем эти цифры в формулу и получаем:

QГВС = 1.16 Вт/кг °С х 100 кг х (55 – 10) °С = 5220 Вт или 5.2 кВт теплоты в сутки.

Примечание. По умолчанию принято, что 1 л воды равен 1 кг, а температура холодной водопроводной воды равна 10 °С.

Единица мощности оборудования всегда отнесена к 1 часу, а полученные 5.2 кВт – к суткам. Но делить эту цифру на 24 нельзя, ведь горячую воду мы хотим получать как можно скорее, а для этого котел должен располагать запасом мощности. То есть, эту нагрузку надо прибавить к остальным как есть.

Основные факторы

Идеально рассчитанная и сконструированная система отопления должна поддерживать заданную температуру в помещении и компенсировать возникающие потери тепла. Рассчитывая показатель тепловой нагрузки на систему отопления в здании нужно принимать к сведению:

— Назначение здания: жилое или промышленное.

— Характеристику конструктивных элементов строения. Это окна, стены, двери, крыша и вентиляционная система.

— Размеры жилища. Чем оно больше, тем мощнее должна быть система отопления. Обязательно нужно учитывать площадь оконных проемов, дверей, наружных стен и объем каждого внутреннего помещения.

— Наличие комнат специального назначения (баня, сауна и пр.).

— Степень оснащения техническими приборами. То есть, наличие горячего водоснабжения, системы вентиляции, кондиционирование и тип отопительной системы.

— Температурный режим для отдельно взятого помещения. Например, в комнатах, предназначенных для хранения, не нужно поддерживать комфортную для человека температуру.

— Количество точек с подачей горячей воды. Чем их больше, тем сильнее нагружается система.

— Площадь остекленных поверхностей. Комнаты с французскими окнами теряют значительное количество тепла.

— Дополнительные условия. В жилых зданиях это может быть количество комнат, балконов и лоджий и санузлов. В промышленных – количество рабочих дней в календарном году, смен, технологическая цепочка производственного процесса и пр.

— Климатические условия региона. При расчёте теплопотерь учитываются уличные температуры. Если перепады незначительны, то и на компенсацию будет уходить малое количество энергии. В то время как при -40 о С за окном потребует значительных ее расходов.

Виды тепловых нагрузок для расчетов

  1. Сезонные нагрузки, имеющие следующие особенности:

— численность людей, одновременно находящихся в помещении;
— наличие технологического или другого оборудования;
— потоки воздушных масс, проникающих сквозь щели и трещины, имеющиеся в ограждающих конструкциях здания.

Основные способы расчета

На сегодняшний день расчет тепловой нагрузки на отопление здания можно провести одним из следующих способов.

Для примера – проект одноэтажного дома 100 м²

Чтобы доходчиво пояснить все способы определения количества тепловой энергии, предлагаем взять в качестве примера одноэтажный дом общей площадью 100 квадратов (по наружному обмеру), показанный на чертеже. Перечислим технические характеристики здания:

  • регион постройки – полоса умеренного климата (Минск, Москва);
  • толщина внешних ограждений – 38 см, материал – силикатный кирпич;
  • наружное утепление стен – пенопласт толщиной 100 мм, плотность – 25 кг/м³;
  • полы – бетонные на грунте, подвал отсутствует;
  • перекрытие – ж/б плиты, утепленные со стороны холодного чердака пенопластом 10 см;
  • окна – стандартные металлопластиковые на 2 стекла, размер – 1500 х 1570 мм (h);
  • входная дверь – металлическая 100 х 200 см, изнутри утеплена экструдированным пенополистиролом 20 мм.

В коттедже устроены межкомнатные перегородки в полкирпича (12 см), котельная располагается в отдельно стоящей постройке. Площади комнат обозначены на чертеже, высоту потолков будем принимать в зависимости от поясняемой расчетной методики – 2.8 либо 3 м.

Расход на подогрев вентиляционного воздуха

Малосведущие люди часто не учитывают, что приточный воздух в доме тоже надо подогревать и эта тепловая нагрузка тоже ложится на отопительную систему. Холодный воздух все равно попадает в дом извне, хотим мы того или нет, и на его нагрев нужно затратить энергию. Больше того, в частном доме должна функционировать полноценная приточно-вытяжная вентиляция, как правило, с естественным побуждением. Воздухообмен создается благодаря наличию тяги в вентиляционных каналах и дымоходе котла.

Предлагаемая в нормативной документации методика определения тепловой нагрузки от вентиляции достаточно сложна. Довольно точные результаты можно получить, если просчитать эту нагрузку по общеизвестной формуле через теплоемкость вещества:

Qвент = cmΔt, здесь:

  • Qвент – количество теплоты, потребное для нагрева приточного воздуха, Вт;
  • Δt – разница температур на улице и внутри дома, ºС;
  • m – масса воздушной смеси, поступающей извне, кг;
  • с – теплоемкость воздуха, принимается 0.28 Вт / (кг ºС).

Сложность расчета этого типа тепловой нагрузки заключается в правильном определении массы нагреваемого воздуха. Выяснить, сколько его попадает внутрь дома, при естественной вентиляции сложно. Поэтому стоит обратиться к нормативам, ведь здания строят по проектам, где заложены потребные воздухообмены. А нормативы говорят, что в большинстве комнат воздушная среда должна меняться 1 раз в час. Тогда берем объемы всех помещений и прибавляем к ним нормы расхода воздуха на каждый санузел – 25 м3/ч и кухонную газовую плиту – 100 м3/ч.

Чтобы произвести расчет тепловой нагрузки на отопление от вентиляции, полученный объем воздуха надо пересчитать в массу, узнав его плотность при разных температурах из таблицы:

Предположим, что общее количество приточного воздуха составляет 350 м3/ч, температура снаружи – минус 20 ºС, внутри – плюс 20 ºС. Тогда его масса составит 350 м3 х 1.394 кг/м3 = 488 кг, а тепловая нагрузка на отопительную систему — Qвент = 0.28 Вт / (кг ºС) х 488 кг х 40 ºС = 5465.6 Вт или 5.5 кВт.

Понравилась статья? Поделиться с друзьями:
Котлы и Бойлеры